RESULTS: Participants recorded an average of 17.2 ± 8.9 minutes of moderate-to-vigorous physical activity (36% of class), but this varied by age and dance type. For children, dance type differences were observed with percent of class in moderate-to-vigorous physical activity ranging from 13.6% (Latin-flamenco) to 57% (hip-hop). For adolescents, there were no differences across dance types. Children were more active than adolescents in all types except ballet. Children and adolescents were more active in private compared with community center classes. 159. Russell JA, Shave RM, Kruse DW, Nevill AM, Koutedakis Y, Wyon MA. Is goniometry suitable for measuring ankle range of motion in female ballet dancers? An initial comparison with radiographic measurement. Foot Ankle Spec. 2011;4 (3):151â“156. [PubMed] 167. Russell JA, Wang TJ. Injury occurrence in university dancers and their access to healthcare; Proceedings of the International Association for Dance Medicine and Science Annual Meeting 2012; October 25–27; 2012; Singapore. 34. Angioi M, Metsios G, Twitchett EA, Koutedakis Y, Wyon M. Effects of customer on fitness and aesthetic competence parameters in contemporary dance: a randomised controlled trial. Med Probl Perform Art. 2012;27 (1):3â“8. [PubMed] Injuries are considered by dancers to be a natural, even necessary, part of participating in dance.92 Toledo et al99 suggest several contributors to dance injuries (Table 1). These should serve only as a general baseline, however, as research into dance injuries becomes more sophisticated with concomitant access to an ever wider cross-section of dancers, including increasingly popular genres like hip-hop41 and breaking,2,4 as well as young dancers.82,89,100 Note that most of the factors in Table 1 are modifiable or treatable, thus making prevention more realistic. This and other references101,102 suggest that improved health care for dancers may result from a psychosocial approach wherein health care providers become conversant with the nature of dance practice and performance in order to effectively review in preventing and recovering from injuries. 150. Nunes NM, Haddad JJ, Bartlett DJ, Obright KD. Musculoskeletal injuries among young, recreational, female dancers before and after dancing in pointe shoes. Pediatr Phys Ther. 2002;14 (2):100â“106. [PubMed] Ambegaonkar et al33 studied upper body muscular endurance in university modern dancers, finding no difference between dancers and non-dancers in spite of modern dance requiring more consistent work with the upper body than ballet, especially in females. They surmised that their dancers’ lack of engagement in upper body physical training outside of dance classes, rehearsals, and performances was the primary contributor, thereby suggesting that participation in modern dance, in and of itself, does not lead to upper body muscular training effects. 114. Twitchett E, Brodrick A, Nevill AM, Koutedakis Y, Angioi M, Wyon M. Does physical fitness affect injury occurrence and time loss due to injury in elite vocational ballet students? J Dance Med Sci. 2010;14 (1):26â“31. [PubMed] 3. Kauther MD, Wedemeyer C, Kauther KM, Weidle PA, Wegner A, von Knoch M. Breakdancer’s “Headspin Hole” – first description of a common overuse syndrome. Sportverletz Sportschaden. 2009;23 (1):52â“53. German. [PubMed] For children, dance type differences were observed with percent of class in moderate-to-vigorous physical activity ranging from 13.6% (Latin-flamenco) to 57% (hip-hop). For adolescents, there were no differences across dance types. Methods: Data were collected in 17 private studios and 4 community centers in San Diego, California. A total of 264 girls from 66 classes participated (n =154 children; n = 110 adolescents). Physical activity was measured with accelerometers, and activity levels during class were calculated. (Female, 17 years old, Flamenco student). Book of an occurrence as an “injury” only if it results in time lost from an individual’s activity is the typical model for
epidemiological reporting, the consensus statement also specifies several caveats that may affect injury reporting data, such as a participant’s motivation, pain tolerance, and peer influence, as well as a team’s coaching philosophy (or, in the case of dance, teaching philosophy). Access to proper medical care and a facility’s or practitioner’s relative attentiveness to recordkeeping also may affect both the quality and quantity of injury data collection. They often spoke of the ‘friendly atmosphere’ in their dance classes. While highly tuned physical capacities are as important for dancers as they are for athletes, there are important differences between these two types of participants and between their activities. These factors impact the application of both preventive and treatment measures within the dance community. All of the literature taken together indicates, then, that the reduction of injury incidence in dancers is a worthwhile, if elusive, target. The task is multi-faceted, and certainly replete with opportunities for additional high-quality research engagement. For further insight into systematically approaching dance injury research, the reader is referred to Liederbach et al’s technical report. Koutedakis Y, Myszkewycz L, Soulas D, Papapostolou V, Sullivan I, Sharp NC. The effects of rest and subsequent training on selected physiological parameters in professional female classical dancers. Int J Sports Med. 1999;20 (6):379–383. [PubMed]